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A STATISTICAL INFERENCE APPROACH FOR THE
RETRIEVAL OF THE ATMOSPHERIC OZONE PROFILE
FROM SIMULATED SATELLITE MEASUREMENTS OF
SOLAR BACKSCATTERED ULTRAVIOLET RADIATION
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ABSTRACT

NASA's Mission to Planet Earth (MTPE) will address important interdisciplinary
and environmental issues such as global warming, ozone depletion, deforestation, acid rain
and the like with its long term satellite observations of the Earth and with its comprehensive
Data and Information System. Extensive sets of satellite observations supporting MTPE
will be provided by the Earth Observing System (EOS), while more specific process
related observations will be provided by smaller Earth Probes. MTPE will use data from

ground and airborne scientific investigations to supplement and validate the global
observations obtained from satellite imagery, while the EOS satellites will support
interdisciplinary research and model development. This is important for understanding the
processes that control the global environment and for improving the prediction of events.

In this paper we illustrate the potential for powerful artificial intelligence (AI) techniques
when used in the analysis of the formidable problems that exist in the NASA Earth Science

programs and of those to be encountered in the future MTPE and EOS programs. These
techniques, based on the logical and probabilistic reasoning aspects of plausible inference,
strongly emphasize the synergetic relation between data and information. As such they are
ideally suited for the analysis of the massive data streams to be provided by both MTPE
and EOS.

To demonstrate this, we address both the satellite imagery and model enhancement
issues for the problem of ozone profile retrieval through a method based on plausible
scientific inferencing. Since in the retrieval problem, the atmospheric ozone profile that is
consistent with a given set of measured radiances may not be unique, an optimum statistical
method is used to estimate a "best" profile solution from the radiances and from additional

apriori information. This method includes a fast guess profile and an estimate of its
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variance, the estimated errors in the measurements, and correlations between profile
variance and errors of measurement at different levels. The apriori information provides a
constraint on which of the solutions consistent with the measured radiances is to be

accepted.

A Bayesian analysis of this problem shows that while the data may fully specify the
likelihood of a profile, the apriori information is often dismissed as not as fully cogent as
the data. In Bayesian estimation, a balance is found between these two in order to ensure
that a unique solution can be selected from within the maximum likelihood of feasible
solutions. In addition, since the number of levels over which the ozone is distributed is

greater than the number of measured radiances, then the problem of inferring the profile
from these measured radiances is an ill-posed one. However, the problem is not only ill-

posed, it is also nonlinear and since the transfer function is itself dependent on the profile,
the information which is passed from the profile plane to the data plane is expressed as a
Fredholm integral equation of the f'trst kind. Ozone retrieval thus appears well suited to a
statistical inference analysis that encompasses both logical and probability based reasoning.

In this application, a maximum entropy based Bayesian method is introduced which

fully utilizes the evidence of prior information and makes logical assignments of numerical
values to probabilities from the measured data. A nonlinear transfer function which
includes a single scatter model, and a given climatological profde are convolved in order to
model twelve solar backscattered ultraviolet (SBUV) radiances. These range from 255.7 to
339.9 nm. The model radiances and the radiative transfer function are then used as input to

both the optimum statistical and maximum entropy methods so as to compare the retrieved
profiles with the given one. In the maximum entropy approach, both the data values and
apriori information are used as constraints on the entropy. This yields a nonlinear equation
for the retrieved profile, and the results obtained are seen to compare favorably with the
corresponding analysis provided by the standard optimal statistical estimation procedure.

In this environment, we demonstrate the power of inductive inferencing to identify

the source of data and then to accurately infer _yond the given data. These considerations

are important in the technology.of artificial intelligence. In the mammalian brain for
example, the inferencing process m which new information or patterns are discovered and
from which predictions are made is implicit in the ability called learning. Most raw data
reaching the brain is noisy, incomplete and the product of the convolution of several
nonlinear sources. How the brain deconvolves these signals and learns from them remains

a mystery. We present results of how two powerful methods of inductive inference are

used to accomplish this.

INTRODUCTION

Developing a comprehensive understanding of how the Earth functions requires
global observations on a sustained, consistent basis for a decade or longer. These
observations must provide both a characterization of the state of the whole planet and
detailed measurement of its regional variations. They must also enable quantification of the

processes that govern the Earth system. Remote sensing of the Earth's environment from
space provides the only truly global perspective available. Making the full set of
observations goes well beyond the capabilities of any single satellite however, and many of
the detailed measurements can only be made in situ. Such a massive network of global

observations is planned for the MTPE program. Extensive sets of satellite observations will

be provided by both EOS and the Earth Probes in order to support the MTPE.
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Among theseveralmissionobjectivesof theEarthObservingSystemis included
that of understandingthe structure,statevariables,composition,anddynamicsof the
atmospherefrom thegroundto themesopause.Sinceremotesensingof theatmospheric
compositionandprofiling by satellitesfirst began,it hasbecomea majortechniquefor the
analysisof planetaryatmospheres.As a consequence,manysophisticatedmethodsfor
derivingatmosphericparametersfrom satellitemeasuredradiationhavebeendeveloped.To
datemostmethodsattempttodeducea bestestimateof thestateof theatmospherefrom the
givenmeasurements,wheretheintensityandspectraldistributionof the latterareassumed
to dependon theatmosphericstatein a knownway. In theproblemof theretrievalof the
atmosphericozoneprofile for example,previousmodelsof theprofile andtheknowledge
of thebehaviorof radiativetransferarecombinedwithmeasureddataincludingtotalozone,
to reachconclusionsabouttheozoneprofile. This is aform of deductiveanalysisin which
weclassify thesolutionsasprofilesandthenrequirethealgorithmto infer themostlikely
onebasedongiveninformation.By deductiveis meantthespecialimplicationof drawinga
particularinferencefromageneralization.

To estimatetheprofile from thedata,we includethatphaseof plausiblereasoning
in artificial intelligence(AI) knownasinductiveinference.By inductiveinferencewemean
thearrivalat a conclusionby usingavailableevidenceto reasonfrom apart to awholeor
from theindividualto theuniversal.A commonproblemthatarisesin all dataprocessingis
thatof howto handleincompleteinformation.Thesituationis furthercomplicatedif there
areseveralsuchdatasetsoriginatingfrom different sources.What is requiredto address
this is a methodthatwill not only performmultiplesourceprocessingof incompletedata,
but will also induce inferencesfrom the data.When an inferenceis madebeyondthe
observationaldata,a logical relationshipbetweenthe dataand the inferencemust be
expressed.This relationis in a generalizedlogic, which is notnecessarilydeductive,and
from which inferenceis neitherdeductivelyprovednordisprovedfrom thedata.It assesses
thesupportfor theinferencegiventhedata,but theessentialfeatureis thatthissupportcan
beof manydifferentdegrees.Forexample,manyinstancesof aneventhappening,with no
exception,in givencircumstances,arebetterevidencethanoneinstancethattheeventwill
happenthe next time thecircumstancesoccur.This relationbetweena setof dataanda
conclusionis calledaprobability,andthesubjectisessentiallywhatiscalledamanyvalued
logic. Generallyspeaking,probability theoryis the systemof reasoningapplicablein the
absenceof certainty. This is also known as inductive logic. As such, a probability
expresses a degree of reasonable belief. In ordinary logic, a fixed set of postulates is given
at the start, and all propositions asserted later are consequences of this set. In probability
theory both the data and the proposition considered are subject to alteration, and it is
therefore necessary to keep the data explicit. This relation is usually written in the form

P(ql p) = a

(read the probability of q, given p, is a), where a is the number that expresses the degree of
confirmation. A fundamental development of the theory of probability has been provided
by Keynes (1929), in which he contends that the above relation expresses an extended
logic or a logic of probable inference. It is defined as a relation between a hypothesis and a
conclusion, corresponding to the degree of rational belief and limited by the extreme
relations of certainty and impossibility. In this sense then, classical deductive logic would
reduce to a special case of the more general development since it would fall within the

domain of the limiting relations. As a consequence, certainty would be a special case of
probability since the latter cannot be based entirely on classical logic. Using this as a basis,
Cox (1946) employs the algebra of symbolic logic to derive the rules of probability from
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primitive notionswhichareindependentof thefrequencyconcept.In effect he determines
the rules or relations of reasonable expectation consistent with symbolic logic.

In terms of both utility and decision modeling, the processing of radiance data for

profile estimation represents a vast and realistic class of problems ideally suited for the
introduction of inductive inferencing. Generally speaking, data processing can be

considered as an operation in which N numbers can be determined from K observations.
For N < K, any data regarded as exact values, often lead to a mutual inconsistency in the
process of determining the best values of N from K. If N = K, then a unique solution
exists. However, deconvolution under these conditions will lead to unstable solutions if
several of the data values contain almost the same information about the conclusions. This
in effect leads to an N > K condition and the problem is then ill-posed since there are many
conclusions consistent with the same data. This is the case for the profile retrieval. There
are two frequently used methods for addressing this. One is model fitting and the other is
the addition of data from other sources so as to get N = K. In the first case N < K and the

problem is changed to one of parameter fitting. Here an answer is obtained whether the
assumption is true or false. If the model is not known to be correct, then we have
essentially constructed one of the infinity of conclusions that fits the data. When N = K,
one can assume that the solution is unique and then use one of several standard

mathematical approaches to determine it. If however, several of the data points contain the
same information, then the problem may again be ill-posed. An example of this can be
found in power spectral estimation, which involves a Fourier transformation of data
between two canonically conjugate spaces, such as position and momentum. Since there is
no data included beyond the range of measurements, these are in effect considered to be
zero. The unmeasured Fourier momentum components however are not zero. This

assumption which causes a discontinuity in the maximum measured momentum value leads
to large oscillations in position space. To overcome this, Fast Fourier transform (FFT)
techniques, employ a smoothing of the data by a time domain window. However, the
design of these windows are not based on the true spectrum, so that immediate
consequences of this are sidelobe leakage in the transfer function of the smoothing window

and a limit on the resolution. For a time series of data covering an interval At, the energy of

the process defining this data will be constrained within this time interval according to the
Heisenberg Uncertainty Principle. In addition, the Fourier transform of this time series

function confines the energy to a bandwidth Af >_(At)" 1. Consequently, the best resolution

attainable is Af = (At) -1. This is because the function is assumed to be zero outside of the

interval in which it is given. If the function can be extended or continued in some

physically realistic manner, then the spectral frequency resolution will be considerably

higher than (At)-1. For a segment of data of a stationary time series which is short

compared to the time series itself, the spectral estimation method of Burg (1967) extends
this short data sequence to that of a complete series through inductive inferencing

employing the maximum entropy principle.

In this paper, we first review the problem of the ozone profile retrieval and then

briefly describe Bayesian and maximum entropy concepts. We present results based on a
maximum entropy/Bayes algorithm using radiance data generated from a given
climatological ozone profile. These results are compared with those of a classical method
known as the optimal statistical solution, using this same generated radiance data.
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STATEMENT OF THE PROBLEM

In 1934, Gotz et el. (1934) were able to use measurements of diffusely transmitted
solar ultraviolet radiation to infer the main features of the atmospheric ozone profile. Since
this classic work, there has been extensive analysis on the problems of inferring
atmospheric profiles from measurements of solar irradiance backscattered by the
atmosphere (Twomey, 1963, 1965, 1966; Twomey and Howell, 1963, 1967; Mateer,
1964, 1965). The possibility of deducing the ozone profile was first suggested by Singer
and Wentworth (1957), and the fin'st mathematical examination of the problem was made by
Twomey, (1961). He showed that by using a single scatter atmospheric model, and by
expressing the mass of ozone above a given pressure level as an explicit function of the
atmospheric pressure, the spectral energy distribution of the backscattered radiance was a
Laplace transform of the ozone profile. This method was used in some of the earliest work

on evaluating measurements of backscattered radiation. The retrieval of the ozone profile
from satellite measurements of the solar ultraviolet radiation backscattered by the earth and
its atmosphere, is usually divided into two parts: that of the high level prof'de above 25-30
km, and below this, the inference of the low level profile. In the high level case, a single
scatter model is usually adequate to determine backscattered intensity accurately. The
corresponding wavelengths here are at 2975/_ and shorter. For wavelengths that penetrate
the ozone layer and are backscattered appreciably within the troposphere, multiple
scattering calculations are essential and the effects of aerosol scattering as well as cloud and
ground reflections become important. A considerable amount of apriori statistical
information about the low level ozone profile is available, whereas relatively few reliable
data are available for the high level profile.

The inference of atmospheric profiles from radiance measurements usually involves
the inversion of an integral equation of the form

SK(x,y)f(x)dx = g(y). (1)

The g(y) are the radiance measurements specified at various values of y, K(x,y) is the
appropriate kernel, and f(x) is a function of the unknown atmospheric profile. In matrix
form, Equation (1) can be written in the form

Af = g (2)

where A is the matrix that transforms from the f(x) profile plane into the g(y) observation
plane and which also allows for the amplitude transmission of differential spatial scales
from the f(x) plane to the g(y) plane. Equations such as (1) in which the kernel is also a
function of the desired variable, are called Fredholm integral equations of the first kind

(Courant and Hilbert, 1953; Fox and Goodwin, 1953; Fox, 1953, 1962, 1964; Phillips,
1964; Tricomi, 1957). In practice, the following approach is used: For a plane parallel
atmosphere, the backscattered radiance I, in the satellite nadir direction, with a solar zenith

angle 0 and a wavelength _., can be written

1

I(X,0) = Fo(k)(313x/16_)(1 +cos20) fexp[-(l+sec0)(axXp+B_.p)]dp

0

(3)
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where

and

Fo(_, ) = extraterrestrial solar irradiance

B_. = atmospheric scattering coefficient (atm) -1
T

a_. = ozone absorption coefficient (atm-cm)-1

Xp = amount of ozone above pressure p (atm) in atm-cm.

Equation (3) is considered the starting point for the retrieval of the vertical atmospheric
ozone profile. In addition to being ill-posed, it is also ill-conditioned in the sense that there
are many solutions which exactly satisfy an integral equation slightly perturbed from the
original starting conditions.

In the process of inverting Equation (3), additional apriori constraint information is
employed to help reduce the problem to one of estimation. A thorough discussion of this is
given by Rodgers (1976). The apriori constraints, are sometimes called 'virtual
measurements' since they contain information used in the construction of the profile. These
can be derived from the physics, from mathematical restrictions on the solution, or from

other independent information. The apriori information used in the optimum statistical
method also includes a "first guess" profile obtained from the best available ozone
climatology. The latter and its variances and covariances are taken as a function of latitude,
time of year, and the total ozone. The radiances that such a profile yields when convolved
with a radiative transfer function, is then calculated and the differences between these and

the measured or direct radiances are then used to provide a new set of profile values. It is

expected that the successively iterated results are more consistent with both the
measurements and the first guess profile. The application of this method also requires an
assessment of the uncertainty or variance in the measurements and statistical apriori profile
information. The former is characterized by errors of measurement and requires
covariances in the errors of measurements to determine how dependent the errors at one

wavelength are on the errors at another. For the apriori information, the corresponding
variances and covariances are obtained in the development of the climatology. A complete

description of an inversion algorithm which utilizes the optimum statistical method is given
by Fleig et al (1990). This approach proceeds as follows: The backscattered radiation given
by Equation (3) is first written in terms of the ratio of backscattered to incident radiation. A
single scatter representation for the radiative transfer function is introduced, and the ratio is
linearized by expanding in a first order Taylor series about a first guess profile. The
problem takes the form of Equation (2) where A is now independent of f. The partial
derivatives called the weighting functions, are obtained from the ozone profile of the

previous iteration and a solution by inversion is obtained in an iterative fashion using
apriori and error information. A "best solution" is arrived at when the rms differences
between the measured and estimated radiances is minimized.

THE INTRODUCTION OF PLAUSIBLE INFERENCE

An important concern in data processing is that of identifying the data with its

source. This may not always be an easy. task. The inclusion of inductive inference methods
then become not only an attractive option but also a necessary one (Pearl, 1988). A sound
method of plausible inference should ideally consist of a strong interaction between logical

and probabilistic reasoning. In the profile retrieval problem for example, one attempts to
induce the profile from the data with a minimum of bias. To accomplish this requires two
items: a prior probability for each of the possible classifications, and the values of the
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conditionalprobabilitiesof theattributesthatdefinetheclasses.This is theprobabilityof
seeingthe datagiven the classandis called the likelihood of the data.Cox (1979)and
Horvitz (1986)provideathoroughandin depthdiscussionon this. Theymaintainthatwith
thesatisfactionof acertainsetof specificconditions,thestandard"axioms"of probability
theoryincludingBayes'Theorem(Bayes,1763;Jeffries,1983)will thenfollow logically
andcanbeuniquely defined.

Fundamentally, Bayes' Theorem means calculating the posterior conditional
probability

P(HilDI) = P(HilI) P(DIHiI) / P(DII) (4)

where Hi represents an hypothesis in a sequence of hypotheses (H 1....... Hi,. ..... Hn),
which form a complete set and whose truth one wishes to judge. D is a set of data, and I is
whatever prior information one has in addition to the data.The inference can

then be summarized such that if H i is the desired profile, then the best estimate of Hi, in

light of the data and any apriori information, is given by that profile which maximizes this
posterior probability. Bayes' Theorem thus relates this probability that we require to the
two others, one of which can be computed directly. Here P(HilI) is the prior probability
and represents the state of knowledge (or ignorance) about the profile before there is any
data. This prior state of knowledge is modified by the data through the likelihood function
or conditional probability P(DIHil). This quantity indicates how likely it is that a particular
data set would have been obtained from a given (trial) hypothesis. In a typical classification
problem, the prior and likelihood terms will compete as to the number of classes present
with the likelihood preferring the largest number possible and the prior preferring the least.
The conditions which provide a number acceptable to both, will also yield the highest value
of the posterior probability. If an experiment is performed and new data D occurs, then a
reevaluation is required of the hypothesis Hi in order to calculate the new conditional
probability (the left hand side of Equation (4)). With the continued occurrence of data D in

repeated experiments, we tend to believe more in the hypothesis Hi at the expense of
believing less in the others. The prior probability can be "well-behaved" as is the case

whenever this function possesses a single maximum. It can also be "badly behaved" in the
sense of having many local maxima. This is usually the case when the data and the desired

variable are nonlinearly related. In such circumstances, techniques involving simulated
annealing methods are sometimes used to avoid producing local subsidiary solutions
(Kirkpatrick, Gelat & Vecchi, 1983). These are usually of little help whenever many almost
equally probable solutions are present.

Since the functional form for the likelihood of the data depends essentially on the
nature of the source producing the data, then the posterior probability will inherit much of
this complex topology. An example of this is found in the restoration of the blurred and

noisy image of the binary stellar system R Aquarii, provided by the Hubble Space
Telescope Faint Object Camera, (Bonavito et al.,1993). Here the image suffered from both
spherical aberration and detector saturation and was characterized by sharp peaks of
intensity within data cells immersed in a dim background. Datasets such as these are
subject to noise governed by Poisson statistics which are then modeled in the likelihood
function.

For complex systems requiring extensive calculations, Bayesian networks show
some promising developments (Pearl, 1988; Chamiak & McDermott, 1985). To determine
the posterior distribution of a Bayesian network, one must specify the prior probabilities of

what are termed root nodes (or nodes with no predecessors) on an AI graph. It is also
necessary to specify the conditional probabilities or likelihood of all of the nonroot nodes
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(evidenceor data), given all possible combinations of their direct predecessors. Bayesian
networks allow one to calculate the conditional probabilities of the nodes in the network

given that the values of some of the nodes have been observed. They are calculated from a
small set of probabilities relating only to neighboring nodes. The nodes can be considered
as random variables representing various states of affairs. In realistic cases, the networks

may consist of thousands of nodes which are evaluated many times as new evidence comes
in. What changes then is the conditional probability of the nodes given the new data. The

ability of the networks to greatly reduce the complete specification of a probability
distribution in complex systems using built-in independence assumptions, now makes

extensive Bayesian analyses realizable.

THE MAXIMUM ENTROPY METHOD

Maximum entropy has its roots in the work of Boltzmann (1877) and Gibbs
(1875) near the latter part of the last century and in the work of Shannon (1948). It has to
do with drawing inferences from incomplete information. Fundamentally, it states that any
inferences made concerning the outcome of any natural process should be based upon the

probability distribution which has the maximum entropy permitted by the data taken during
observation of the process. Here the data is defined as ensemble averages,

n

dk = Z PjAkj, 1 < k < m, (5)

j=l

where Akj defines the nature or physics underlying the measured quantities, and the pj, the
distribution upon which the ensemble averages are imposed as constraints. Then as shown
by Gibbs (1875) and Jaynes (1957), using the the method of Lagrange multipliers, with the

partition function,

n

Z ITIZ(_.l,...,_.m) = exp(- _.kA kj) (6)

k=l
j=l

the maximum entropy distribution is,

m

exp(- _ _,kAkj),

k=l

l<j_n. (7)

The Lagrange multipliers _.k are obtained from

blnZ
_+dk=0,
3kk

1 <k<m, (8)
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a set of m simultaneous equations for m unknowns. Any other distributions allowed by the
constraints (5), will necessarily have entropy values less than those determined by Equation
(7). The fact that Pj is a positive quantity has important implications in all areas of signal
processing. There are as many Lagrange multipliers as there are equations of constraint,
and these constitute the disposable parameters of the minimally prejudiced probability
distribution. They are to be so adjusted as to satisfy the given data. From this, one may
conclude that maximum entropy is the appropriate method to 'reason' from the microscopic
to the macroscopic. Thus, if one wishes to consider the expectation values for the measured

data values given by Equation (5), as entities for which the sum of the probabilities is equal
to one, then the corresponding measured values can be said to introduce an element of
logical reasoning into the problem of plausible inference. In this sense, they help to
determine the consequences of the model for the given constraints. On the other hand, one
can also consider that probabilistic reasoning, which enters through Equation (7), is
required to interpret the plausibility of the model.

ESTIMATION OF THE ATMOSPHERIC OZONE PROFILE

The problem that we address in this paper is defined as follows: We convolve a

known ozone profile at a specified latitude, time of day and solar zenith angle, with a given
radiative transfer function using twelve ozone absorption and twelve atmospheric scattering
coefficients. This produces twelve model SBUV radiance data values. Using these
simulated data values together with the SBUV estimated total ozone and the radiative
transfer function, the task is to retrieve the above known (Given) ozone profile used in the
convolution.

Let us summarize some of the key issues pertaining to the retrieval problem. We
first note that there are more levels over which to distribute the total ozone than there are

measured data values (the ill-posed problem). The transfer function is also non-linear and is
itself a function of the desired profile. This gives rise to an expression for the backscattered
radiation that is in the form of a Fredholm integral equation of the first kind. These integral
equations are very difficult to solve and often times unwarranted assumptions are imposed
in order to handle them. The problem is also ill-conditioned in that there are many possible
solutions which exactly satisfy this integral equation whenever the original starting
conditions are slightly perturbed.

The problem is then formulated in terms of the atmospheric pressure. This is
possible since the altitude above the surface (except for minor local barometric fluctuations)
and the ozone amount distribution, are each be expressed parametrically as a function of
atmospheric pressure. It is also useful to choose atmospheric pressure as the independent
variable, since atmospheric pressure, not altitude, has a direct influence upon the scattering
of the ultraviolet solar radiation.

Measurements of backscattered ultraviolet solar radiation are made at a small

number, m of wavelengths, so that in order to facilitate calculation, the atmosphere is
divided into n layers, where n is greater than m. A large number of layers is sometimes
used to obtain a smooth curve representing the amount of ozone in each layer. In what

follows, xj represents the amount in the jth layer and T is the total amount of ozone in all
of the layers.
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To adapt the maximum entropy method to the problem of profile retrieval requires
the identification of the probability distribution (Equation (7)), with an appropriate profile

parameter such as the fraction of total ozone received at a particular level,

fj = xj / T. (9)

From this, the distribution can be written as

eft_
PJ=n

XfJ
j=l

(10)

As a consequence, Pj can then be replaced by fj where fj >__0 at each level. This positivity
constraint is guaranteb.xl by the exponential in the maximum entropy solution.

It is convenient to describe the observed radiances of Equation (3) in terms of a quantity Qx

defined as the ratio of incident to backscattered radiation

PN

Q_= Jexp(- [ (c_xXp+_p)] dp)
(11)

A
where fix = etx (1 + sec 0) and _x = 13x (1 + sec 0). Equation (11) is of the form of a

Fredholm integral equation of the first kind and an approximate maximum entropy solution
for this type of equation as well as those of the second kind and the Wiener-Hopf type have
been developed by Mead (1986) and Papanicolaou (1984). In their ap.proach, generalized
moments are introduced into the integral equation and the problem is converted into an

equivalent one in which the informational entropy is maximized using these moments as
constraints. Rather than utilizing this approach however, we proceed as follows: The

integral in Equation (11) is discretized by dividing the atmosphere into n layers

Here Xk

where

n

Qx = _ Axjgjx (12a)

j=l

Axj =[exp(-_x pj)] Wj (12b)

Wj = 0.5 ( Apj + Apj+l ), for j = 1,2,....,n-1

= 0.5 Apn, for j = n (12c)

and gjx = exp(- _x fXk).

k=l

is the ozone amount in the kth layer. From this, one can then define

(12d)
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Apj = pj - Pj-1, (12e)

where pj is the pressure at the bottom of the jth layer.
Equation(12a)is a nonlinearequationfor theozonelayerdistribution {Xl, x2,x3,......xn}.
Maximizingtheinformationalentropysubjectto thenormalization

n

_fj =1 (13)

j=l

and the m constraints Q_., where _, = 1,2, .... ,m, yields

fj = 1/Z exp(Fj). (14)

MHere Z=_exp(Fj), Fj= _C_.y_.A_.kgk_. and C_=_t_.T.

j _.=1
k=l

The y_. are the Lagrange multipliers which couple the constraints Q_.

RESULTS AND DISCUSSION

All of the data used in this problem including that which comprise the curves shown
as Given and Guess in Figure 1, and that which was used to evaluate the maximum entropy
and optimum statistical technique profiles, were provided by the Atmospheric Chemistry
Branch of the Laboratory for Atmospheres at the Goddard Space Flight Center. The
Rayleigh scattering and ozone absorption coefficients which define the spectroscopic
character of this particular radiative transfer function are shown in Table 1. The left hand

column are the twelve wavelength values for which twelve corresponding data values of Q_.

given by Equation (12a) were produced during the convolution process. The value for the
solar zenith angle was taken to be 69 degrees.
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Table 1

Absorption and Scattering Coefficients

Wavelength OzoneAb_fionCoefficient RayleighScm_dngCoefficient
_m) _tm_m)-I (atm)-I

255.7 309.7 2.4573
273.6 169.9 1.8131
283.1 79.88 1.5660
287.7 48.33 1.4597
292.3 27.82 1.3627
297.6 13.66 1.2605
302.0 7.462 1.1831
305.9 4.281 1.1194
312.9 1.632 1.0198
317.6 0.8684 0.9527
331.3 0.1397 0.7956
339.9 0.0248 0.6864

The ozone distribution for the curve labeled Given was obtained from twelve larger layers

of ozone known as Umkehr layers. These Umkehr layers are in turn derived from an

algorithm which is based on climatology information. The twelve values are then cubic
spline interpolated to 92 layers to yield what is shown as the Given curves of Figures l(a)
and (b). These 92 values were then used to obtain the convolution of a single scattering
radiative transfer function given by Equation (3). The total ozone was obtained by the
summation of the ozone amount at each of the 92 levels. To convert to Dobson units, these

are multiplied by 1000. The curves shown as the Guess on Figures l(a) and (b), are

obtained by changing the day number, latitude and total ozone in the above.

Figure l(a) shows the maximum entropy retrieved profile. It is clear from these
results that this inversion is very close to the Given profile, that is, the one used as the

known profile in this example. This agreement is almost exact at all pressure values from
below 1 mb up to 1 atmosphere. Figure 1(b) depicts the profile retrieved by the optimum

statistical technique for this same Given profile.

This example has allowed us to demonstrate the power of inductive inference
methods not only to identify correctly the most likely source of a dataset but also to

accurately "predict" new information. In Bayesian analysis the sample probabilities are
used to induce an hypothesis which most likely will identify with the data source. In this
way, Bayesian statistics involves learning something about the assumptions by looking at
the results. This provides a quantitative way to evaluate the probabilities of different
assumptions, given the data. This is important in science for example, where there are often
competing hypotheses for the exp!anation of some natural phenomenon. Going back into
the unknown, using the observations, is what characterizes Bayesian statistics. In this
sense it uses data to test hypotheses. Maximum entropy on the other hand, uses the model
identified with the data source to make inferences about the data samples. This cannot be

done in classical statistics.

The process of updating knowledge by introducing new data is a basic one in the
animal ability called learning. This is complicated by the fact that raw data reaching the
mammalian brain is more likely than not the result of the convolution of several nonlinear

sources which may have generated datasets that are noisy and incomplete as well.
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The ability to deconvolve these signals and learn from them has fascinated experimental
psychologists for more than a century. A recent trend by members of this community has
been to pursue the idea that individuals solve particular kinds of problems by making

specific inferences (deductive) using rough guidelines that keep track of conclusions
compatible with the information at hand and along with relevant prior knowledge. The best
fit between the premises of a problem and the acceptable conclusion is judged to be
plausible. Psychologists have also focused on ideas which may be involved in forming
decisions out of incomplete or ambiguous pieces of information. It is under these
conditions however that the human brain often falls prey to what is called "cognitive

illusions." More recently, the ability "to understand" has occupied the attention of scientists

and engineers engaged in the field of machine learning. The studies surrounding learning in
the brain has split along the two fines of thought called behaviorism and cognitivism. These
center about the question of whether learning is a matter of behavioral patterning by
reinforcement or the storage and use of knowledge. The early behaviorists considered

learning as automatic and machinelike. They observed that if a particular response to a
particular stimulus pays off for an organism, then the response is likely to be repeated and
the probability that the response will be further repeated will be increased by further
rewards. It holds that behavior begins as essentially random activity, but connections are

strengthened between stimuli and response when the latter are followed by a satisfying
result. Known as reinforcement, this is said to strengthen a response, thereby making it

more probable. Complementing this concept is that of cognitivism which holds that from
the process of reinforcement, information is retained and is conf'trmed or not by experience,
resulting in learning. With the addition of information to random neural systems and with
the development of expectations about how certain goals can be achieved, both perspectives
can be viewed as the psychological analogues to self-organization. In a very similar
fashion, this can also be viewed as a Bayesian description of learning.
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